ENTERPRISE
JAVABEANS
COMPONENT
ARCHITECTURE

Designing and Coding Enterprise Applications

INTRODUCTION

J Topics in This Chapter

* The Enterprise JavaBeans™ Architecture
* How This Book Is Organized

e Qur Vision

* Reader Audience

* About the Examples

e Source Code Online

Chapter

istributed computing has always had tough problems to solve: secu-

rity, concurrency, database transactions, data integrity, and perfor-

mance requirements, to name a few. How does the Java 2 Platform,

Enterprise Edition (J2EE) address these issues and what is the role of
the Enterprise JavaBeans architecture?

As we describe the Enterprise JavaBeans component architecture, let’s
define where we hope to go, how we hope to get there, and who we hope to
take with us. The software industry has exciting offerings right now and in the
near future. The architecture of loosely coupled components promises to offer
flexibility, scalability, and portability. There is no better time than now to delve
into the world of distributed component computing!

1.1 What Is the Enterprise
JavaBeans Architecture?

The Enterprise JavaBeans (E]JB) architecture is a specification developed at Sun
Microsystems. It describes a component-based architecture that provides for
the development and deployment of distributed applications. The specification
details the services and requirements of an application server which manages
EJB components. It also describes coding requirements that bean developers
must follow to create portable applications. The lofty and worthwhile goal is

Chapter 1 Introduction

for bean developers to write EJB components once and deploy them on any
application server that is compliant with Enterprise JavaBeans technology. Fur-
thermore, the EJB architecture makes enterprise applications scalable, secure,
and transactional.

Enterprise JavaBeans are components that execute within an “EJB con-
tainer,” under the supervision of an application server. There are three main
EJB types: session, entity, and message driven. Furthermore, session beans
come in two flavors: stateless and stateful. The application server and EJB con-
tainer provide system services for EJBs, such as data persistence, transactions,
security, and resource management. The EJB container maintains pools of data-
base connections, as well as pools of E]JB instances that can be assigned to cli-
ents as needed.

The Java 2 Platform, Enterprise Edition (J2EE) is an industry-standard suite
of Java APIs for enterprise computing from Sun Microsystems. It includes the
Enterprise JavaBeans architecture and a set of related packages that make
everything work together. For example, a Java client may use the Java Naming
and Directory Interface (JNDI) to look up the location of an EJB component.
The application server, which provides the system services that make EJBs
work, uses Java Remote Method Invocation (RMI) and RMI-IIOP to implement
remote calls across a network. Message-driven beans, a new type of EJB, use
the Java Message Service (JMS) to provide a bean capable of responding to
messages. So, while Enterprise JavaBeans technology provides specific services
in the realm of enterprise computing, it is part of a larger picture. This picture
is inscribed by J2EE and its many independent packages that provide specific
services.

Why should developers care about J2EE and EJB? Because the application
server manages an EJB and provides the system services we mentioned, bean
developers can concentrate on designing enterprise applications that adhere to
specific business requirements. Instead of writing transactional database code,
bean developers can pay attention to business rules, business processes, and
how to best keep track of business data. Furthermore, as J2EE technology
matures, commercial application servers that support this specification will
become more numerous. Better still, as these J2EE application server products
improve, the same enterprise application written today will perform better
tomorrow—unchanged—because the application server will provide a better
implementation.

1.2 How This Book Is Organized

The chapters follow a gradual progression from the simplest type of EJB (state-
less session with no database access) to a complete enterprise application with

1.2 How This Book Is Organized

eight EJBs, one web component, and multiple application clients. It’s best to
read the chapters in this order.

Chapter 2 begins with an overview of the Enterprise JavaBeans architecture.
This chapter introduces the J2EE components and explains the role of the
application server and container in managing EJBs and the system services
they use. You should read this material first if you are new to enterprise beans,
but even experienced developers may find it necessary to return to this chapter
from time to time. By doing this, you discover how everything fits into the big
picture.

Chapter 3 introduces the simplest E]B component, the stateless session bean.
Our example, Loan EJB, is a component that produces amortization tables and
monthly payment amounts for long term fixed-rate loans. We introduce the
Value Object Pattern. After giving you an overview of Java Server Pages (JSP),
we also present our first web component client.

Chapter 4 presents Java Database Connectivity (JDBC) with EJBs. In this
example, we use a stateless session bean as a database reader. After introduc-
ing the basics of JDBC, we show you how to use an EJB for read-only database
access. We implement the Data Access Object (DAO) Pattern and explain how
to customize an application with a deployment descriptor. The chapter also
presents a Swing application client (complete source listing found in
Appendix A) and a JSP web component client.

Chapter 5 presents stateful session beans and contrasts them with stateless
session beans. This is the beginning of our online shopping application exam-
ple. Our stateful session bean, MusicCart EJB, is a virtual shopping cart that
holds items selected by customers running a JSP web component client. We
also introduce the Value List Iterator Pattern and explain EJB local interfaces.

Chapter 6 introduces entity beans. Although our example uses Bean-Man-
aged Persistence (BMP), the reader should be familiar with the material in this
chapter because much of it applies to entity beans in general. We present entity
bean finder and home methods. Our example is Customer EJB, an isolated
“customer” entity bean with BMP. We use the DAO pattern for the persistence
implementation. We introduce the very important Session Facade Pattern and
local interfaces with entity beans. We enhance our JSP web component client to
perform customer lookup and verification against the persistent datastore.

Chapter 7 continues with entity beans. We now explore Container-Managed
Persistence (CMP) and Container-Managed Relationships (CMR). We intro-
duce EJB QL, the J2EE query language required to specify custom finder
semantics and select methods. Our example includes three related entity beans:
Customer EJB, Order EJB, and Lineltem EJB. We describe the expanded role of
local interfaces and revisit the Session Facade Pattern. The JSP web component
client creates customer orders using the data collected in the stateful session
MusicCart EJB presented in Chapter 5. The full application now contains seven
EJBs, one web component, and an administrative client to inspect the database.

Chapter 1 Introduction

Chapter 8 introduces message-driven beans, the newest EJB component. We
begin with an overview of the Java Message Service (JMS) and explain the Pub-
lish-Subscribe and Point-to-Point messaging models. Messaging provides a
loosely coupled architecture that can enhance the performance of enterprise
applications. Our first example is a Message-Driven Bean (MDB) that provides
a response mechanism to a client. Our final example is a Java client which
sends a message to a ShipOrder MDB. The ShipOrder MDB interfaces with the
previously written Session Facade to request the shipment of certain customer
orders.

1.3 Our Vision

Enterprise JavaBeans technology is not an easy topic. Yet we believe E]B to be a
significant offering in the enterprise computing arena. For the first time, there
exists a specification that allows bean developers to write transactional, multi-
user, scalable enterprise applications without being experts in transactions,
multithreaded programming, security, or database programming. Pulling the
enterprise system services out of the components and standardizing them
within an application server has tremendous benefits. The most obvious bene-
fit is that we leave the implementation of these system services to developers
who are experts in enterprise issues. As the technology matures, the application
servers will get better, and our enterprise applications will in turn run better.

Does this make EJB authoring simplistic? Not hardly. But it makes EJB
authoring accessible and portable across multiple platforms. Our vision is to
create a text with examples that teach, not just how to create an EJB, but how to
design components that work best within the framework of a particular appli-
cation. We strive to create examples that show you when to use an entity bean,
not as an isolated entity bean example, but as a component within a whole,
real-world application.

The industry is learning as pockets of developers here and there build on
experiences. We learn what works and what doesn’t. And from these battles
with reality emerge design patterns that address common problems. So, along
with our examples, we've also attempted to attack some of these problems. We
show you how to apply commonly accepted design patterns to your enterprise
designs (and why). Our hope is that you can take our examples and build your
own solutions more quickly with an understanding of the design trade-offs
that you'll make.

As you wind your way through these examples, we hope your EJB journey
will be both exciting and rewarding.

1.5 About the Examples

1.4 Reader Audience

We are writing to an audience of Java programmers. If you're reading this
book, then you're interested in enterprise computing. A complete enterprise
application entails many parts: one or more clients, an application server to
manage the EJBs you write and deploy, and a Java Virtual Machine (JVM) to
execute Java bytecode. Clients come in many flavors: a command-line Java pro-
gram, a Java Server Pages (JSP) web component, or even a client that uses
Java’s Swing GUI are all common types of clients. Some familiarity with data-
base software is helpful. Java Database Connectivity (JDBC) is the Java API for
portable database operations. While we don’t assume you know JSP or JDBC,
we do provide only an overview of these subjects—enough so that you can fol-
low and understand our examples.

We take a similar approach with our overviews of the Java Message Service
(JMS) and the EJB Query Language (EJB QL). JMS underlies the implementa-
tion of message-driven beans. Bean developers use EJB QL to compose custom
queries for CMP entity beans.

1.5 About the Examples

Enterprise JavaBeans Component Architecture is an example-driven book. Our
goal is to show you how to design effective EJB components through our exam-
ples. Each example teaches you some aspect of EJB design. For instance, our
first example (Loan E]B) illustrates the design and use of a stateless session
bean (see “The Loan Enterprise Bean” on page 36).

The enterprise computing community has developed a rich set of design
patterns. Where possible, we apply accepted design patterns within our exam-
ples, explaining the benefit that each pattern brings, as well as presenting its
complete implementation. See, for example, the Session Facade Pattern imple-
mented in several examples (“Session Facade Pattern” on page 250 as well as
“Session Facade Pattern” on page 329).

We've attempted to bring an element of real-world problem solving to our
program examples. At the same time, we avoid solutions that entail layers and
layers of abstraction. We hope the developer can recognize the types of enter-
prise applications our examples represent and use our code as a starting point
for further development. For example, we’ve written a JSP web component cli-
ent that allows a user to log into a “system” based on a user name and a pass-
word. An underlying database stores “customer data,” and several enterprise
Java beans provide the database lookup and verification steps. There’s hardly a
customer-based web site that doesn’t need a similar capability (see “Web Com-
ponent Client” on page 262).

Chapter 1 Introduction

Note that besides presenting code for all our EJB examples, we also present
complete code for the clients. It may be surprising to see JSP programs in a
book about EJB, but our belief is that the examples become more useful when
you see how they work within a complete application. Also, an E]JB is a compo-
nent—and components can have all sorts of clients. Thus, we show you a JSP
client and a stand-alone Java client with the same EJB.

We’ve developed and deployed all our examples using the Sun Microsys-
tems Reference Implementation. We run the J2EE server on a Solaris Machine,
but have tested our clients on several platforms including Windows and Red
Hat Linux.

Table 1.1 describes the different examples. Some chapters include a single
application (one or more clients with one or more E]Bs). Other chapters include
multiple examples built on earlier ones. This table will be helpful as you install
and run the examples on your own system.

Table 1.1 Examples by Chapter

Example
Chapter and Topics Components Source Directory
Chapter 3: Stateless Session Beans loanSession
Stateless Session Bean Loan EJB
Application Exceptions LoanObjectException
Value Object Pattern LoanVO
Stand-alone Java client AmortClient

JSP web component client ~ paymentGet

paymentPost
Chapter 4: Session Beans with JDBC musicSession
Session Beans with JDBC Music EJB
Database Reader
Application Exceptions NoTrackListException
Value Object Pattern RecordingVO
TrackVO
Java Swing client MusicApp (see Appendix A)

JSP web component client ~ musicGet

musicPost

1.5 About the Examples

Table 1.1 Examples by Chapter (continued)

Chapter and Topics

Example

Components Source Directory

Chapter 4: Session Beans with [DBC

Data Access Object Pattern musicDAO
DAO Pattern Music EJB with DAO
Factory Pattern MusicDAOFactory
System Exceptions MusicDAOSysException
Naming Environment Entry
Chapter 5: Stateful Session Beans musicvL
Stateful Session Bean MusicCart EJB
Value Object Pattern CustomerVO
Value List Iterator Pattern Musiclterator EJB
MusicPage E]B
JSP web component client login
loginPost
musicCart
shoppingPost
Chapter 5: Stateful Session Beans
Local Interfaces musicLocal
Local interfaces MusicPage E]B
Local vs. Remote interfaces Musiclterator EJB
Stateful vs. Stateless
Chapter 6: Entity Beans with BMP customerDAO
Bean-managed persistence Customer E]B
Finder/Home methods
Transactions
Local Interfaces
DAO Pattern CustomerDAO
Session Facade Pattern CustomerSession EJB
Value Object Pattern CustomerVO
Test Client CustomerTestClient

10 Chapter 1 Introduction

Table 1.1 Examples by Chapter (continued)

Example
Chapter and Topics Components Source Directory

JSP web component client signUp

signUpPost
loginPost
Chapter 7: Entity Beans with CMP ordersCMP
Container-managed Customer E]B
persistence
Relationship fields Order E]JB
EJB Query Language Lineltem E]B
Finder/Select Methods
Session Facade Pattern CustomerSession EJB
Value Object Pattern OrderVO
LoanVO
JSP web component client ~ processOrder
submitOrder
Administrative client AdminClient

Chapter 8: Message-Driven Beans

JMS message queues PingServer

Publish/Subscribe Pattern ~ SchoolApp client School
Student MDB

Point-to-Point Pattern OrderApp client ShipOrders

EJB integration ShipOrder MDB

1.6 Source Code Online

We maintain all the source code in this book at an FTP site. You can reach this
site through our web site at http: //www.asgteach.com

