
Navigating C++ and Object-Oriented Design

Chapter 1 Getting Started
1.1 Object-Oriented Design

Abstraction
1.2 Object Modeling Technique (OMT)
1.3 Object Model Notation

Classes
Associations
Multiplicity
Link Attributes and Association Classes
Role Names
Ordering
Qualification
Aggregation
Generalization
Generalization with Multiple Inheritance
Virtual Base Classes

1.4 Scenarios
Error Conditions

1.5 Putting It All Together
The Modeling Process
Library System Description
Library System Object Model
Initial C++ Class Definitions
OMT Notation Summary

1.6 Key Point Summary
1.7 Exercises

Chapter 2 C++ Basics
2.1 Data Representation and Built-in Types

Constants
Program Variables
Constant Variable Types
Enumerated Types
Arrays
Lvalues and Rvalues
Pointers
Pointers with const
Array and pointer Relationship
References
Typedefs
Volatile
Casts and Conversions
Void Pointers
bool

2.2 Preprocessor Directives
Include File Directive
Define and Undefine Directives
Macros
Conditional Compilation

2.3 Comments
2.4 Type-Safe I/O



2.5 Operators and Expressions
Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators
Conditional Operator
Increment and Decrement Operators
Compact Pointer Expressions
Comma Operator
Sizeof Operator
Typeid Operator
The Scope Resolution Operator (::)

2.6 Control Flow Constructs
if and if-else
while
do while
for
switch
break and continue
goto

2.7 Putting It All Together
Pointer Arrays

2.8 Key Point Summary
2.9 Exercises

Chapter 3 C++ Program Structure
3.1 Functions

Inline Functions
Recursive Functions
Pointers to Functions
Arrays as Function Arguments
Default Function Arguments
Functions with a Variable Number of Arguments

3.2 Structures and Unions
Structures
Member Functions
Structure Pointers
Arrays with Structures
Nested Structures
Typedefs with Structures
Structure Copy and Assignment
Unions
Bitfields

3.3 References with Functions
References as Function Arguments
References as Function Return Types
References to Pointers

3.4 Storage Classes
auto
static
register
extern
mutable



3.5 Exceptions
try
catch
throw
Exception Specifications

3.6 Namespaces
Why Use Namespaces?
Namespace Definitions
Namespace Extensions
Accessing Namespace Members
Unnamed Namespaces
Nested Namespaces
Using Directives
Using Declarations
Namespace Aliases
Namespaces with Program Development

3.7 Dynamic Memory Allocation
Operator new
Error Handling
Operator delete
new and delete with Pointer Arrays
new and delete with Multidimensional Arrays

3.8 Putting It All Together
A Money Bag
An Optimized Block Move Function

3.9 Key Point Summary
3.10 Exercises

Chapter 4 Classes
4.1 What Is Encapsulation?

Fifo Objects
Controlled Interfaces
Private and Public

4.2 Classes
Using the Scope Operator (::)

4.3 Constructors
Default Constructors

4.4 Destructors
4.5 What's this?
4.6 Exception Objects
4.7 Const Objects

Const Member Functions
Mutable Data Members

4.8 Volatile Objects
Volatile Member Functions

4.9 Copy Constructors
4.10 The Problem with Public Data Members
4.11 Data Member Objects
4.12 Class Member Initialization

Const Data Members
Reference Data Members

4.13 Putting It All Together
A StringN Class
A Record Class

4.14 Key Point Summary
4.15 Exercises



Chapter 5 Working with Classes
5.1 Using explicit
5.2 Object Lifetimes

Containment
Pointers to Objects
References to Objects

5.3 Static Data Members
5.4 Static Member Functions
5.5 Static Objects
5.6 Arrays of Class Objects

Constructors with Arrays of Class Objects
Destructors with Arrays of Class Objects

5.7 Pointers to Class Members
Pointers to Static Members
Pointers to Nonstatic Data Members
Points to Nonstatic Class Member Functions

5.8 Friend Classes
5.9 Nested Classes
5.10 Local Classes
5.11 Putting It All Together

Namespaces and Classes
Namespaces and Libraries

5.12 Key Point Summary
5.13 Exercises

Chapter 6 Overloading
6.1 Why Overload Functions?
6.2 Function Overloading

Default Arguments
Signatures
Return Types

6.3 Overloading Resolution
Single Argument Matching
Exact Match
Trivial Conversions
Promotions
Standard Conversions
User-Defined Conversions
Ellipsis (...)
Multiple Argument Matching
Intersection Rule
Overloading and Namespaces

6.4 Why Overload Operators?
6.5 Overloadable Operators
6.6 Operator Functions

Operator Nonmember Functions
Operator Member Functions
Conversions with Cast Operators

6.7 Putting It All Together
A Character List Class
Smart Pointers

6.8 Key Point Summary
6.9 Exercises



Chapter 7 Class Design
7.1 What Is Class Design?
7.2 A Class Design Boilerplate

Operator=()
A Class Design Checklist

7.3 A String Class
String Conversion
String Assignment
String Concatenation
String Comparison
String Subscripts
Substrings
Overloading Streams
Friend Functions

7.4 A Range Integer Class
Range Integer Conversion
Range Integer Assignment
Range Integer Prefix and Postfix Operators
Range Integer Input and Output

7.5 Putting It All Together
Lvalue and Rvalue Separation

7.6 Key Point Summary
7.7 Exercises

Chapter 8 Object Storage Management
8.1 Global new and delete

Nothrow Operator new
Placement with Operator new
Static and Global Buffer Placement
Free Store Placement
Arena Placement
Explicit Destructor Calls
User-Defined Operators new and delete

8.2 Class-Specific new and delete
Memory Pools

8.3 Reference Counts
A String Class with Reference Counts
Copy on Write
Adding Reference Counts to Existing Classes

8.4 Putting It all Together
A Memory Leak Detector

8.5 Key Point Summary
8.6 Exercises

Chapter 9 Template Functions
9.1 Why Should Functions Be Generic?
9.2 Template Function Definition
9.3 Template Function Instantiation

Using export
Function Invocation
Pointers to Template Functions

9.4 Overloading Template Functions
Template Function Argument Conversions

9.5 Specializing Template Functions
Specializing for Correctness
Specializing for Performance



9.6 Putting It All Together
A Generic Two-dimensional Array Function
A Generic Transpose() Function

9.7 Key Point Summary
9.8 Exercises

Chapter 10 Template Classes
10.1 Why Should Classes Be Generic?
10.2 Template Class Definition

A Generic Stack Class
Template Default Types

10.3 Template Class Instantiation
A Generic One-Dimensional Array Class

10.4 Specializing Template Classes
A Generic Block Class

10.5 Containment with Template Classes
A Generic Fifo Class

10.6 Composite Templates
A Generic Two-Dimensional Array Class
A Generic Three-Dimensional Array Class

10.7 Template Class Static Members
10.8 Constant Expression Parameters

A Generic Buffer Class
Templates with Typedefs and Enumerations

10.9 Template Friend Functions
10.10 Template Friend Classes
10.11 Template Nested Classes

A Generic Associative Array Class
10.12 Member Templates

Specializing Member Templates
10.13 Putting It All Together

A Generic List Class with Iterators and Value Semantics
10.14 Key Point Summary
10.15 Exercises

Chapter 11 Inheritance
11.1 Why Use Inheritance?

A Procedure-Oriented Approach
An Object-Oriented Approach

11.2 Public Derivation
Dominance
Constructors and Destructors
Base Class Initialization
Object Maps

11.3 Subtypes
Static Binding

11.4 Virtual Functions
Dynamic Binding
Virtual Definitions
Virtual Destructors
Polymorphic Programming

11.5 Protected Access
Access Restrictions
Two-Dimensional Array Class Revisited
Virtual Functions and Access Levels

11.6 Using Declarations



11.7 Private Derivation
A Bounded Array Class
Using Declarations
Forwarding

11.8 Protected Derivation
A Grid Class Hierarchy

11.9 Summary of Derivation Options
11.10 Polymorphism with a Generic PtrList Class

A PtrList Class
A PtrIterator Class

11.11 Abstract Base Classes
11.12 Virtual Constructors

Virtual Object Functions
Virtual Copy Constructors
Virtual Functions in Constructors and Destructors

11.13 A Class Design Boilerplate with Inheritance
A Class Design Checklist

11.14 Putting It All Together
Container Classes, Pointers, and Copy Semantics
Template Classes with Inheritance
Virtual Function Implementation

11.15 Key Point Summary
11.16 Exercises

Chapter 12 Run-Time Type Identification
12.1 Why Is RTTI Necessary?
12.2 The Dynamic Cast Operator

dynamic_cast with Pointers
dynamic_cast with References

12.3 The Typeid Operator
type_info Class

12.4 RTTI Applications
Working with Class Hierarchies
Extending Class Libraries
Controlling Object Behaviors

12.5 Putting It All Together
RTTI Implementation
Persistence

12.6 Key Point Summary
12.7 Exercises

Chapter 13 Exception Handling
13.1 Why Use Exceptions?
13.2 Designing with Exceptions

try Blocks
Throwing Exceptions
Rethrowing Exceptions
Catching Exceptions
Exception Objects
Matching Exceptions to Handlers

13.3 Exception Hierarchies
Virtual Response Functions
Rethrowing Exceptions from Hierarchies
An ArrayError Exception Hierarchy
Discriminating Exceptions



13.4 Resource Management
The auto_ptr Class
Exceptions Thrown from Constructors
Placement Operator delete
Exceptions Thrown from Destructors
Specialized Pointer Classes

13.5 Uncaught Exceptions
The terminate() Function

13.6 Exception Specifications
Designing with Exception Specifications
Standard Exception Classes

13.7 Unexpected Exceptions
The unexpected() Function
Handling Unexpected Exceptions

13.8 Putting It All Together
A RintError Exception Hierarchy

13.9 Key Point Summary
13.10 Exercises

Chapter 14 Multiple Inheritance
14.1 Why Use Multiple Inheritance?

Dynamic Classification
14.2 Multiple Inheritance Format

Base Class Initialization
14.3 Multiple Inheritance Characteristics

Ambiguities
Dominance
Polymorphism
Structural Patterns with Multiple Inheritance

14.4 Distinct Base Classes (Pattern 1)
Pattern 1 Example
Polymorphism
Dynamic Classification
Resolving Ambiguities
Pattern 1 Object Layout and Conversions

14.5 Multiple Inclusion (Pattern 2)
Pattern 2 Example
Polymorphism
Resolving Ambiguities
Pattern 2 Object Layout and Conversions

14.6 Virtual Base Classes (Pattern 3)
Pattern 3 Example
Polymorphism
Base Class Initializers
Pattern 3 Object Layout and Conversions

14.7 Interface and Implementation
14.8 Putting It All Together

Implementing Persistence with Multiple Inheritance
Dominance with Virtual Base Classes
Virtual Functions Implementation with Multiple Inheritance

14.9 Key Point Summary
14.10 Exercises



Appendix A IOStream Library
A.1 Why Use the IOStream Library?
A.2 IOStream Overview

Stream File I/O
Random Access with Streams
Standard String Streams
Delimiters
Stream Input
Stream Output
Manipulators
Error Conditions

A.3 IOStream Examples
Hue
File Stream Output
File Stream Input
File Stream Input and Output
Appending to a File Stream
Word Count Program

Appendix B Standard Template Library
B.1 Why Use STL?
B.2 STL Overview

Containers
Iterators
Generic Algorithms

B.3 STL Examples
Vector
List
Deque
Queue
Stack
Map
Pointer Semantics

B.4 STL References

Appendix C C++ Operator Precedence
C.1 C++ Operator Precedence (Table)


