
Virtual Everywhere
January 25, 2022

Front and Center!
JavaFX with Spring Boot

Paul Anderson
Gail Anderson
Anderson Software Group, Inc.
asgteach.com

1© 2022 Anderson Software Group

http://www.asgteach.com

} Training Company
◦ Java, JavaFX Courses

} JavaFX Authors
◦ Definitive Guide to JavaFX
◦ JavaFX Rich Client

Programming on the
NetBeans Platform

} LiveLesson Videos
◦ JavaFX Programming
◦ Java Reflection

2© 2022 Anderson Software Group

} Why JavaFX?
} Why Spring Boot?
} Design Approach
} Gluon Ignite Demo
} JPA with H2, MySQL
} REST Service
} Music Demo, WebClient
} Reactive Stream Demo
} Wrap Up, Q & A

3© 2022 Anderson Software Group

} Modern Clients
◦ Platform independent source code
◦ “Write Once, Install Everywhere”

} JavaFX Features
◦ Rich UI controls, graphics, media engines
◦ Concurrency library for asynchronous tasks

} JavaFX Advantages
◦ Java UI, scene graph, nodes, FXML views
◦ Properties, listeners, binding, event handlers

4© 2022 Anderson Software Group

} Advantages
◦ Easy to use and understand
◦ Reduces development time

} Benefits
◦ Starter dependencies
◦ Annotation based
◦ Eases dependency management
◦ Manages REST endpoints
◦ Includes embedded servlet container

5© 2022 Anderson Software Group

} What is a Starter?
◦ Handles dependency management
◦ Starter dependencies specified with Maven/Gradle
◦ Adds jar files to classpath
◦ Format: spring-boot-starter-type

} Examples
◦ Web: spring-boot-starter-web
◦ Test: spring-boot-starter-test
◦ JPA: spring-boot-starter-data-jpa

6© 2022 Anderson Software Group

} Main Issues
◦ JavaFX has its own lifecycle and controllers
◦ FXML Loader not created and managed by Spring

} Integration Approach
◦ Use Gluon Ignite libraries
◦ Add JavaFX controller and FXML view
◦ Spring Boot main application launches JavaFX
◦ Both Ignite and Spring Boot contexts initialized
◦ JavaFX loader builds scene graph

© 2022 Anderson Software Group 7

} Why Use Gluon Ignite?
◦ Supports popular DI frameworks
◦ Allows DI in JavaFX applications
◦ Also in FXML controllers
◦ Supports multiple views

} How Do You Use Ignite?
◦ Include as a dependency
◦ Initializes the Spring Context

© 2022 Anderson Software Group 8

© 2022 Anderson Software Group 9

} What is JPA?
◦ Java Persistence API
◦ Defines entities, attributes, relationships
◦ Provides Entity Manager, JPQL, Criteria API

} What is Hibernate?
◦ Implements JPA with Object Relational Mappings
◦ ORM framework on top of JPA
◦ Provides mappings between tables and database
◦ Handles exceptions and transactions

© 2022 Anderson Software Group 10

} What is an Entity?
◦ Java POJO that can be persisted to the database
◦ Represents a table stored in a database
◦ Every instance represents a row in the table

} JPA Annotations
◦ @Entity, @Table, @Version
◦ @Id, @Column, @GeneratedValue, @Basic
◦ @JoinColumn, @JoinTable, @OrderBy
◦ @OneToOne, @OneToMany, @ManyToOne, @ManyToMany

© 2022 Anderson Software Group 11

} What is JpaRepository<T,ID>?
◦ Provided by Spring framework
◦ Methods for CRUD operations, sorting, paging

} Using JpaRepository<T,ID>
◦ Repository interface extends JpaRepository<T,ID>
◦ Inherit JPA methods, define your own
◦ count(), findById(), findAll(), findAllById()
◦ save(), saveAll(), existsById(), delete()
◦ deleteById(), deleteAll(), deleteAllById()

© 2022 Anderson Software Group 12

} Server Setup
◦ Starter dependencies, Application properties
◦ H2 or MySQL Database
◦ Domain Entities, JPA Repository
◦ REST Controllers

} Client Setup
◦ Spring Boot Application with JavaFX
◦ Domain POJOs, REST Service
◦ View Controller

© 2022 Anderson Software Group 13

} What is a REST Service?
◦ Producer/consumer with Service resources
◦ Service is stateless and cacheable
◦ Clients use middle-layer for Service

} REST, HTTP with @RestController
◦ @GetMapping : read resource
◦ @PutMapping : update existing resource
◦ @PostMapping : create new resource
◦ @DeleteMapping : delete resource

© 2022 Anderson Software Group 14

© 2022 Anderson Software Group 15

} What is WebClient?
◦ Replaces RestTemplate in Spring 5
◦ Reactive streams approach
◦ Provides blocking, non-blocking modes

} Using WebClient
◦ Dependency spring-boot-starter-webflux
◦ Inject builder, retrieve with Mono, Flux wrappers
◦ Consume REST service with retrieve()
◦ Use block() for synchronous retrieves

© 2022 Anderson Software Group 16

© 2022 Anderson Software Group 17

} What are Reactive Streams?
◦ Reactive Core Java 8 library
◦ Provides asynchronous stream processing
◦ Publish-Subscribe model

} Using Reactive Streams
◦ Publisher interface includes Flux and Mono
◦ Subscribers request data from the stream
◦ Events are pushed to subscribers
◦ Method intervals, transforms, back pressure drops

© 2022 Anderson Software Group 18

© 2022 Anderson Software Group 19

} JavaFX and Spring Boot
◦ All Java stack for development
◦ Gluon Ignite for integration
◦ Separates UI from backend operations

} JPA, REST, WebClient, Reactive
◦ Spring Boot simplifies JPA, REST services
◦ WebClient for non-reactive systems
◦ Reactive clients and servers

20© 2022 Anderson Software Group

} Thanks for Attending!
paul@asgteach.com @paul_asgteach
gail@asgteach.com @gail_asgteach

} GitHub Source Code
https://github.com/gailasgteach/JavaFX-SpringBoot-Samples

} Q & A

21© 2022 Anderson Software Group

mailto:paul@asgteach.com
mailto:gail@asgteach.com
https://github.com/gailasgteach/JavaFX-SpringBoot-Samples

